Combining UAV-imagery and machine learning for wildlife conservation
نویسنده
چکیده
Semi-arid savannas are endangered by changes in the fragile equilibrium between rainfalls, fires and grazing pressure exerted by wildlife or cattle. To avoid bush encroachment and the decline of perennial grass, land managers must pay attention to keep the amount of cattle and wildlife in balance with the grass availability. In large farms and conservation parks, to estimate the animal populations is therefore an important management aspect. Traditional methods of animal census – such as transect counts from a helicopter, or mark / recapture – are too expensive and laborious to be conducted on a regular basis. In this context unmanned aerial vehicles (UAVs) appear as an interesting tool for animals detection. They can be easily deployed, for lower cost and an increased safety. The drawback is that it is difficult to visually interpret the large number of very high resolution (VHR) images that they acquire. The recent advances in machine learning techniques could allow to automate the detection of animals in these aerial images. This project aims to implementing such algorithms in order to investigate the feasibility and potential benefits of combining machine learning and UAVs for animals detection. This study uses an image dataset acquired in the Kuzikus Wildlife Reserve in Namibia and a ground truth acquired through crowd-sourcing. The machine learning techniques involved include Bags of visual Words, exemplar SVMs and active learning. The promising results show that recall rates in the range of 60 to 80% are possible, if a low precision (5 to 20%) is accepted. The study also discusses parameters related to the data acquisition, such as the image resolution and the time of the day when the images are acquired. Résumé Les savanes semi-arides sont menacées par des changements dans le fragile équilibre entre les pluies, les feux de brousse et la pression pastorale exercée par le bétail et les herbivores sauvages. Afin d'éviter l'avancement des broussailles ligneuses et le déclin des herbes pérennes, les éleveurs et gardiens de parcs doivent être attentifs à maintenir un nombre d'animaux en adéquation avec le fourrage disponible. Ainsi, estimer les populations d'herbivores des grandes fermes et parcs naturels est une étape importante dans la gestion des savanes semi-arides. Les méthodes traditionnelles pour le comptage des animaux – telles que les comptages par transectes ou par marquage et recapture – sont trop chères et trop laborieuses pour être utilisées de façon régulière. Dans ce contexte, les véhicules …
منابع مشابه
Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملEvaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملCombining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.
Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both...
متن کاملLow Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring
In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کامل